Review: Newton's Laws

Newton's First Law
The velocity of an object does not change unless a force acts on the object

Newton's Second Law: $\mathbf{F}_{\text {net }}=m \mathbf{a}$ The acceleration of an object is proportional to the net force on the object Newton's Third Law
For every force an object exerts on a second object, there is an equal and opposite force exerted on the first object

These are equal and opposite forces even if you break the wall or your fist keeps going!

Today: Expanding upon

Newton's 2 ${ }^{\text {nd }}$ Law ($\mathrm{F}_{\text {net }}=\mathrm{m}$ a)

- Confirming what we know on Gravity
- Normal Force
- Tension
- Making a Free Body Diagram
- The Inclined Plane (Takes practice. Not on next quiz but following one)
Extra Practice Problems: 4.19, 4.21, 4.25, $4.33,4.35,4.37,4.47,4.51,4.75$

Weight

- Weight is the force due to gravity
- All objects on Earth with mass (nearly everything) are attracted to the surface of the Earth
- If object is close to the Earth's surface:

$$
\begin{gathered}
\vec{F}_{G}=W=m \vec{g} \\
\vec{g} \text { - acceleration of gravity }
\end{gathered}
$$

g is specific to Earth (why weigh less on Mars, $\mathrm{a}_{\text {gravity }}$ different, $\sim 2 \mathrm{~m} / \mathrm{s}^{2}$, based on planet mass\&radius)

Direction: towards ground (center of Earth)

Draw a Picture, Label Positive Direction

In other words, weight is the acceleration of a freely falling body (g on Earth) times its mass m

$$
\vec{F}_{G}=\text { weight }=m g
$$

$$
+y
$$

Ground

$$
\mathrm{F}_{\mathrm{x}}=0 \text { so } \mathrm{a}_{\mathrm{x}}=0
$$

Vectors! (same as projectile motion)
Newton's Second Law: $\quad \vec{F}_{\text {net }}=m \vec{a} \quad \mathrm{~F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}}$ and $\mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}$

Same as what we learned before

Free-Body Diagrams (FBDs)

If it doesn't have units of
Newtons ($\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$), then it doesn't belong on a FBD! (No velocity or acceleration or even m^{*} a)

- This is known as a free-body diagram (FBD).
- A FBD labels all of the forces acting on (not by) an object.
- Only forces acting on an object will affect its motion (acceleration).
- FBDs can be much more complex than this.

Movie Physics (do not ignore air resistance)

An 80 kg movie stuntman jumps from a window of a building situated 30 m above a catching net. Assuming an air resistance of $100-\mathrm{N}$ on the stuntman as he falls, determine his velocity just before he
 hits the net.

$$
\begin{aligned}
& \text { Last } 2 \text { Pro tips! } \\
& \text { Draw a FBD and }
\end{aligned}
$$

$$
\text { write out } \mathrm{F}_{\mathrm{x}}=\mathrm{m} \mathrm{a}_{\mathrm{x}} \text { and } \mathrm{F}_{\mathrm{y}}=\mathrm{m} \mathrm{a}_{\mathrm{y}}
$$

How should we approach this problem? How would we have approached this problem before?

Except for gravity (and electric/magnetic fields, 102), all forces on FBD are in contact with the object.

$$
\begin{gathered}
\vec{F}_{\mathrm{net}}=m \vec{a} \\
\sum F_{y}=m a_{y}
\end{gathered}
$$

Box stays at rest means $a_{y}=0$ Change in velocity is zero

$$
\sum_{F_{y}}=0
$$

$n=$ Force of surface on box, keeps box from falling
Normal force ($\mathbf{F}_{\mathbf{N}}, \mathbf{n}$ or \mathbf{N}) - contact force Always perpendicular to surface (wall?)
For box at rest $(\mathrm{a}=0): \quad \sum F_{y}=n-m g=0 \quad \Rightarrow n=m g$
What should be the normal force for big box underneath?
For big box underneath:

$$
\sum F_{y}=n_{2}-m g-M g=0=n_{2}-(M+m) g
$$

Draw a Free-Body Diagram

- Example: box at rest on a surface with a string lightly pulling up on it, but not lifting it off

$$
\begin{aligned}
& \vec{F}_{\text {net }}=m \vec{a} \\
& \sum F_{y}=m a_{y}
\end{aligned}
$$

Box at rest means $a_{y}=0$

$n=$ Force of table on box, keeps box from falling Normal (perpendicular) force - type of contact force

For box at rest: $\quad \sum F_{y}=T+n-m g=0$

$$
\Rightarrow n=m g-T
$$

Another thing FBDs are good for:

Inclined Planes

Physics is infamous for sliding blocks down inclined planes

How boring! Why do we study it?

Many things we do involve inclines.

Blocks are an easy way to simplify many complex objects. In physics, we approximate things as blocks or round

A real example: My Icy Driveway

When my driveway is a sheet of ice (ignore friction), how fast do I need to be driving to get to the top of my driveway?

Making 2 dimensions only 1 !

Better, unless if going around an inclined curve (Ch. 7)

Why would I change x and y ?
In Case A, need $v_{x}, v_{y}, \Delta x, \Delta y$?
Have to break up the vector components
In Case B: $\Delta \mathrm{y}=0, \mathrm{v}_{\mathrm{y}}=0$
Acceleration changes though: $\mathrm{a}_{\mathrm{x}}= \pm 9.8 \sin \theta$

Why $\mathrm{a}_{\mathrm{g}, \mathrm{x}}= \pm 9.8 \operatorname{Sin} \theta$?

http://zonalandeducation.com/mstm/physics/mech

y component of acceleration Breaking up vector components:
Draw a line parallel to y axis from start of the vector
Draw a line parallel to x axis from end of vector
direction? (Tricky question)

Does the acceleration in the y
direction mean that it will
Does the acceleration in the
direction mean that it will
change velocity in y
θ SAME ANGLE!

My Icy Driveway

When my driveway is a sheet of ice (ignore friction on slope), (a) how fast do I need to be driving to get to the top of my driveway? (b) Is this feasible on an icy day? (c) Is it feasible if my car was not in a garage?

Inclined
Driveway
Garage
Acceleration of starting for a typical car is only 0.5 g . So, how could I get out of my driveway?

A cart (weight w_{1}) is attached by a lightweight cable to a bucket (weight w_{2}) as shown. The ramp is frictionless.

(c) 2012 Pearson Education, Inc.

When released, the cart accelerates up the ramp.
Which of the following is a correct free-body diagram for the cart?

A car engine is suspended from a chain linked at O to two other chains. Which of the following tensions should be included in the free-body diagram for the engine?
A. tension T_{1}
B. tension T_{2}
C. tension T_{3}
D. two of the above
E. T_{1}, T_{2}, and T_{3}

An elevator is being lowered at a constant speed by a steel cable attached to an electric motor. There is no air resistance, nor is there any friction between the elevator and the walls of the elevator shaft.

The upward force exerted on the
 elevator by the cable is
A. greater than the downward force of gravity.
B. equal to the force of gravity.
C. less than the force of gravity.
D. any of the above, depending on the speed of the elevator.

Two blocks are arranged as shown and kept at rest by holding the $1-\mathrm{kg}$ block in place.

The tension force in the string is closest to:
A. 10 N
B. 11 N
C. 12 N
D. 10 N at the left end; 12 N at the right
E. Smoothly varying from 10 N by the left block to 12 N by the right block

What is the tension in the string closest to if we instead hold the $1.2-\mathrm{kg}$ block?

A piano mover raises a $100-\mathrm{kg}$ piano at a constant rate using the frictionless pulley system shown here. With how much force is he pulling on the rope? Ignore friction and assume $g=$ $10 \mathrm{~m} / \mathrm{s}^{2}$.

A. 2000 N
B. 1500 N
C. 1000 N
D. 750 N
E. 500 N

Consider this ball at rest on the table. We can conclude that the downward gravitational pull of Earth on the ball and the upward contact force are equal and opposite because of which fact:
A) the two forces form an action/reaction pair B) the net force on the ball is zero

You are standing at rest and begin to walk forward. What force pushes you forward?
A. the force of your feet on the ground
B. the force of the ground on your feet
C. the force of your acceleration
D. the force of your velocity
E. the force of your momentum

Only forces that act on you affect your motion and belong on your free body diagram

Note: $\mathbf{F}_{\text {PG }}$ propels person forward \mathbf{F}_{GP} affects ground (Earth) does not affect person

A woman pulls on a $6.00-\mathrm{kg}$ crate, which in turn is connected to a $4.00-\mathrm{kg}$ crate by a light rope. The light rope remains taut.

If the two crates are accelerating to the right,
A. the $6.00-\mathrm{kg}$ crate exerts more force on the $4.00-\mathrm{kg}$ crate than the $4.00-\mathrm{kg}$ crate exerts on the $6.00-\mathrm{kg}$ crate.
B. the $6.00-\mathrm{kg}$ crate exerts less force on the $4.00-\mathrm{kg}$ crate than the $4.00-\mathrm{kg}$ crate exerts on the $6.00-\mathrm{kg}$ crate.
C. the $6.00-\mathrm{kg}$ crate exerts as much force on the $4.00-\mathrm{kg}$ crate as the $4.00-\mathrm{kg}$ crate exerts on the $6.00-\mathrm{kg}$ crate.

A lightweight crate (A) and a heavy crate (B) are side by side on a frictionless horizontal surface. You are applying a horizontal force F to crate A. Which of the following forces should be included in a free-body diagram for crate B? (Not all possible forces are necessarily listed.)
A. the weight of crate B
B. the force of crate B on crate A

C. the force F that you exert
D. the acceleration of crate B
E. more than one of the above

Clicker Answers

Chapter/Section: Clicker \#=Answer
Today: $36=\mathrm{A}, 37=\mathrm{B}, 38=\mathrm{C}, 39=\mathrm{E}, 40=\mathrm{B}, 41=\mathrm{B}$, $42=\mathrm{C}, 43=\mathrm{A}, 44=\mathrm{A}$

